
Infections that evolve over the course of prolonged per-
sistent interactions between the host and the pathogen 
present a major challenge for disease control. Important 
advances have been made in the control of a range of 
acute infections using interventions that target a single 
biological focal point — neutralizing diphtheria toxin, for 
example, or enhancing immune recognition of the capsule 
of meningitis-causing bacteria — but it is more difficult to 
predict the impact of a targeted intervention on the com-
plex biology of a persistent infection. Infectious diseases 
reflect an equilibrium between the host and the pathogen 
that is established and maintained by a broad network 
of interactions that occur across scales that range from 
molecular to cellular, to whole organism and population 
levels. Maintenance and evolution of these interactions 
over a prolonged time frame adds further complexity to 
persistent infections1 (BOX 1). Experimental approaches 
that are applied at each of these individual levels gener-
ate dense islands of information — for example, in terms 
of pathogen genome sequences or the global transcrip-
tional response of an infected cell — but conventional 
approaches cannot integrate information across scales 
and systems. For the persistent infections with the greatest 
global health impact, such as HIV‑1/AIDS, tuberculosis 
(TB) and malaria, the ability to understand the interplay of 
various host–pathogen interactions across different spatial 
and temporal scales will be of considerable assistance in 
the rational design of improved tools for disease control 
and their rational implementation.

In this Review, we consider how systems biology 
can contribute to the challenges that are involved in 
studying persistent infection, and focus on TB as a 
specific example. Systems biology is an approach to 

understanding, explaining and predicting biological 
phenomena that arise from the dynamic interactions 
of more than one component. These components could 
be molecules, cells, organs or whole organisms2. The 
systems-biology framework combines mathematical 
modelling and simulation to complement traditional 
empirical and experimental approaches to biomedical 
research. These models and simulations are driven by 
empirical observations and generate specific, explicitly 
testable predictions that enable refinement of the mod-
els in response to experimental validation. This iterative 
development of models and experiments is a crucial 
feature of a systems-biology research approach2,3.

There are two ways in which a systems-biology 
approach can be used to address persistent infections. 
First, at a single biological scale, current whole-genome 
technologies produce datasets that far exceed the ana-
lytical capacity of traditional reductionist reasoning. By 
constructing, validating and analysing mathematical 
and computational models, systems biology offers an 
opportunity to identify key networks of interactions, to 
suggest their functional properties and to predict the most 
informative sets of future experiments. A second, and 
more challenging, role for systems biology is to exploit 
the common language that is inherent in mathematical 
formulations to forge links between models that reflect 
different scales, thereby allowing us to explore how 
properties at one scale affect phenomena at other scales. 
For example, the rational design of a new antimicrobial 
requires understanding at the molecular level of drug 
action against a microbial target; at the host level of  
drug distribution and pharmacokinetics; and at the popula-
tion level of the effect of resistance mutations on microbial  
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Abstract | The human immune response does an excellent job of clearing most of the 
pathogens that we encounter throughout our lives. However, some pathogens persist for  
the lifetime of the host. Despite many years of research, scientists have yet to determine the 
basis of persistence of most pathogens, and have therefore struggled to develop reliable 
prevention and treatment strategies. Systems biology provides a new and integrative tool 
that will help to achieve these goals. In this article, we use Mycobacterium tuberculosis as an 
example of how systems-biology approaches have begun to make strides in uncovering 
important facets of the host–pathogen interaction.
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Box 1 | Scales of Mycobacterium tuberculosis infection

The outcome of infection with M. tuberculosis is determined by interactions that occur over various biological scales that 
range from molecular and cellular to anatomical and population levels. To formulate an integrated biological 
understanding of tuberculosis, we need to be able to assess how interactions at one level affect interactions that occur at 
each of the other levels. For example, how is a change in the sequence of a gene that encodes a drug target in  
M. tuberculosis manifested at the population scale? Mathematical models that arise from systems-biology approaches offer 
a unique potential to establish quantitative links across multiple biological scales. Different mathematical systems capture 
biological complexity best at individual scales. Continuous modelling: variables (for example, concentration) in the model 
are tracked in a continuous manner; discrete modelling: variables (for example, cell number) in the model are tracked 
discretely; deterministic modelling: dynamics of the model system are completely determined by the input; stochastic 
modelling: dynamics are not determined, but variability and unpredictable outcomes may arise. 

Host Pathogen Scale 
(time)

Scale 
(length)

Examples of 
modelling 
(dynamics)

Examples of 
modelling 
(model type)

Population Days–
years

100–103 m Deterministic Systems of ODEs

Body 105–106 s 10–2–100 m Deterministic Hybrid: ODE and 
ABM

Tissue 104–105 s 10–5–10–2 m Stochastic and 
discrete

Algorithmic: ABM

Single cell 101–103 s 10–5 m Deterministic 
and continuous

Mathematical: 
ODE

Molecule 101–102 s 10–9–10–8 m Deterministic 
and continuous

Statistical

ABM, agent-based model; ODE, ordinary differential equation.

fitness in immunocompetent and immunodeficient hosts. 
It is impossible to construct a conventional biological 
framework that encompasses these widely separated disci-
plines. We would therefore argue that integrative systems 
biology, particularly when applied across several scales, is 
the most promising approach for breakthroughs in our 
understanding of persistent infections.

The interaction between the host and the pathogen 
occurs on different scales. These range from molecular 
interactions, including, for example, the recognition of 
specific molecular patterns on innate immune cells by 
Toll-like receptors, to interactions between individual 
cells, which, in turn, can range from the phagocytosis of 
bacteria by macrophages to the spread of disease through 
a host population and the emergence of different strains 
of pathogens in response to different host conditions. 
Elements at different scales interact, which can determine, 
for example, the relative success of the pathogen at the 
population level. This interaction then determines selec-
tion pressures at the genetic level in both the host and the 
pathogen, which are expressed in terms of often subtle 
changes to molecular interactions. At each biological 

scale, the appropriate mathematical or computer model 
to be constructed is chosen. This decision is based, in 
part, on the dynamics that are under consideration (Box 1). 
Mathematical models use equations or simulations to 
describe biological events, and these are then typically 
solved using a computer. By contrast, computational mod-
els are applied using a computer, as a detailed sequence 
of rules that are implemented directly in object-oriented 
programming languages. Hybrid models that use both 
equations and computational systems are possible. Several 
excellent texts that describe the use of each of these mod-
els in different areas of biology are available4–10, as well as 
texts that describe statistical model analysis of biological 
systems11–13 and computer-based models8,14.

Both biological experiments and modelling efforts 
have been successful at elucidating the properties of a 
disease at any particular level, but a full understand-
ing requires the integration of all scales. This is a major  
challenge for systems biology.

In this Review, we explore this approach using TB as 
a paradigm example of a persistent infection15. In addi-
tion to the spatial scales outlined in BOX 1, TB highlights 
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the importance of temporal scales (BOX 2). Signalling 
pathways that are triggered within the first few minutes 
of the encounter of macrophages with Mycobacterium 
tuberculosis are crucial in determining the intracellular 
fate of the bacilli, and the release of cytokines from den-
dritic cells (DCs) over the first few days is important 
in programming subsequent T‑cell responses. Primed 
T cells migrate to the lung over a period of weeks. As 
indicated in BOX 2, pathogenesis and disease evolve over 
a timescale of years or decades. Attempting to link events 
over such timescales with molecular and cellular  
events that occur in minutes or hours cannot be achieved 
by conventional microbiological or immunological 
experimental approaches, particularly considering the 
different spatial scales that are involved and problems 
in integrating spatial and temporal scales. To surmount 
such challenges, a multi-scale systems-biology approach 
is the most feasible.

In this article, we describe events at various scales 
that have key roles in determining the outcome of 
M. tuberculosis infection. We briefly highlight some 
of the systems-biology modelling that has been  
carried out at individual scales, but focus mainly on 

attempts to integrate across scales. We also discuss 
how these attempts have already contributed to uncov-
ering important facets of the host–pathogen interac-
tion and indicate the most important directions for 
future research.

A tour of the scales
As indicated in BOX. 1, all of the spatial scales of the host–
pathogen interaction are interlinked and it is not easy to 
collapse the complex network of interactions into a logical 
linear narrative. The scale at which one starts the descrip-
tion is also somewhat arbitrary. From the perspective 
of human health, two key objectives serve as a guiding  
principle.

First, at the host population level, we aim to pre-
dict the epidemiological effects of various treatments, 
including drugs, vaccines and public health measures 
(such as the isolation of infected individuals, a com-
mon strategy in the past for TB), and predict the spread 
of new emerging strains (perhaps drug resistant) into 
populations with particular characteristics.

Second, although a good epidemiological model 
might accurately predict the statistical likelihood of an 

Box 2 | Temporal scales in tuberculosis infection

Compared with many other diseases, the timescales involved in tuberculosis (TB) are long and there is large variation 
between different individuals. Mycobacterium tuberculosis is transmitted by aerosol from individuals with active disease. 
Bacteria that reach the alveoli of the lung are ingested by macrophages, where they can initiate rounds of intracellular 
replication and cell lysis (see the figure). Macrophages are key effector cells in mycobacterial killing, but can also provide a 
niche for bacterial multiplication. Dendritic cells engulf bacteria, or bacterial components, circulate to the draining lymph 
nodes and prime T cells, which then return to the lungs to orchestrate control of the infection100. T cells enhance the 
antibacterial activity of macrophages by releasing cytokines, such as interferon‑γ, which generally results in arrest or 
clearance of the infection. If the T-cell response is insufficient to control the initial infection, clinical symptoms will 
develop within ~1 year in the form of primary progressive disease. Prior vaccination with bacille Calmette–Guérin (BCG),  
a live attenuated strain that is closely related to M. tuberculosis, establishes a primed population of T cells and reduces 
severe primary disease in children. Most individuals develop a T-cell response in the absence of any clinical symptoms, 
which is defined as a latent infection and carries a risk of secondary disease owing to subsequent reinfection or 
reactivation of the initial infection. Autopsy studies show that latent infection is often associated with persistence of 
viable bacteria15. Bacteria can persist within granulomas (see latent TB in the figure) that function to contain bacterial 
spread. In adult pulmonary TB, breakdown of granulomas in the lung promotes mycobacterial replication, release of 
bacteria into the airways and effective aerosol transmission. Transmission is enhanced by the destruction of lung tissue, 
which is mediated by the same immune cells that are crucial for protection during the earlier stages of infection.
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Ordinary differential 
equation
A system of equations that is 
based on the rates (derivatives) 
of change of dependent 
variables with respect to time. 
Most of the interesting 
differential equations are 
nonlinear and, with a few 
exceptions, cannot be solved 
exactly. Approximate solutions 
are determined using 
computer simulations.

Mendelian
Genetic inheritance of disease 
susceptibility through a single 
gene.

TH1
After priming by exposure to 
signals from antigen-presenting 
cells, T cells undergo a process 
of maturation to their final 
effector phenotype. Cytokines 
produced by TH1 cells (for 
example, interferon‑γ) enhance 
the antimicrobial activity of 
macrophages and have an 
important role in protection 
against Mycobacterium  
tuberculosis. Cytokines 
produced by TH2 cells (for 
example, interleukin‑4) are 
important in promoting 
antibody responses. Cells that 
have not committed to the  
TH1 or TH2 lineages are 
referred to as TH0.

Linkage analysis
A test for co-inheritance of 
genetic markers along with 
disease susceptibility in family 
groups.

individual becoming infected with TB, we aim to predict 
the outcome of the disease at the individual level, and 
therefore prescribe the best possible treatment for that 
individual.

The interplay between these two objectives high-
lights a basic theme that will be apparent throughout 
this Review. At the epidemiological level, we can initially 
treat the population as homogeneous, using averaged 
population properties for the host, the pathogen and 
their interaction. However, such homogeneous models 
often provide a poor fit to observed data and make poor 
predictions. This is because individual variation is impor-
tant and the interactions between different sub-groups of 
both hosts and pathogens can lead to significantly dif-
ferent outcomes compared with a homogeneous model. 
Such heterogeneity, in turn, affects the overall population 
behaviour. In attempting to obtain more accurate popu-
lation-level models, we are therefore inevitably drawn 
towards understanding host–pathogen interactions at the 
individual level — that is, in reality, the host and patho-
gen populations only interact via individuals (BOX 1).  
To explore this further, we first describe modelling at the 
population level.

Population level. Interest in population-level modelling 
long precedes the recent enthusiasm for systems biology, 
and indeed represents one of the earliest applications of 
mathematics in biology. Fibonacci set a calculation of the 
exponential growth of a dividing population as an exercise 
in the Liber Abaci in 1202 (Ref. 16). Although this calcula-
tion was applied specifically to breeding rabbits, the same 
model can also describe the initial unchecked growth 
of an epidemic or of a population of bacteria. Daniel 
Bernoulli used a modelling approach to influence public 
health policy for smallpox in 1760 (Refs 17–19), and mod-
els of the dynamics of epidemics began to be developed 
in the mid-nineteenth century20. Of particular note is the 
work of Ronald Ross, who was interested in why some 
diseases, such as cholera, produce rapid epidemics fol-
lowed by periods in which they almost disappear, whereas 
others, such as malaria, can persist indefinitely in the 
population. He developed a mathematical model based 
on a set of ordinary differential equations that described 
the dynamics of the number of infected individuals in a 
population21 and, together with Hilda Hudson, analysed 
their dynamic properties under various conditions22,23. 
This approach was refined and extended by Kermack 
and McKendrick24–26 into the now-fundamental SIR 
(susceptible–infected–recovered) model, which is at the 
root of almost all existing models of the dynamic spread 
of disease through a finite population.

For TB, it is important to divide the infected group 
into latently infected and actively infected individuals, as 
these contribute particularly differently to the spread of 
the disease27–29. Additional categories, such as infectious 
and non-infectious, which are distinguished by the pres-
ence or absence of bacteria in the sputum, can also be 
introduced to provide more refined models or represent 
potential treatments27,30–32. By computing the frequency 
at which patients with active disease transmit infection 
to the susceptible population, these models can be used 

to predict the impact of different interventions on the 
overall dynamics of disease. It is predicted for TB, for 
example, that enrolment of 70% of the most infectious 
patients in a chemotherapy programme with an 85% cure 
rate would affect Ro (the number of secondary cases aris-
ing from each primary case) and reduce the epidemic27,33. 
Modelling can similarly be applied to predict the effect 
of different vaccination approaches and assess the poten-
tial impact of combining treatment and prevention34,35. 
These models provide the cornerstone of global TB 
control programmes (see Further information for a link 
to The Global Plan to Stop TB 2006–2015).

From population to individual: the effect of hetero­
geneities. The standard SIR-type models described above 
assume that all individuals are identical. However, it is 
well known that population heterogeneities can have 
an important role. Contrary to the assumptions of an 
SIR-type model, an infected individual is not equally 
likely to come into contact with every susceptible indi-
vidual in the population. This has led to models that 
more accurately reflect the spatial and social organiza-
tion of the host population. The value of these models 
was illustrated by the foot-and-mouth epidemic in the 
United Kingdom and the subsequent debate about 
different vaccination strategies36–38. Such models made 
use of comprehensive farm-by-farm data on the spread 
of the epidemic. For TB, a number of recent models 
have incorporated household structure by incorporat-
ing different transmission rates within and between 
households of different sizes39,40. The resulting network 
models more accurately reflect transmission patterns 
and the prevalence of TB in response to changing 
social organization41.

It is also essential to consider the influence of 
biological heterogeneities, in both the host and the 
pathogen. An example of heterogeneity in the host 
was provided by classical twin studies which showed 
that human genetic diversity has a major influence on 
susceptibility to TB42. Two types of study have pro-
vided insights into the genetic control of TB. The first 
approach, which focused on rare mutations that confer 
a Mendelian form of hypersusceptibility to mycobacte-
rial infection, demonstrated an essential role for genes 
that are involved in the T-helper-1 (TH1)-type pathway 
for macrophage activation43. The second approach, 
which was based on case-control studies of candidate 
genes and genome-wide linkage analysis of affected 
siblings, identified much smaller effects of more com-
mon polymorphisms in genes that were implicated in 
microbial recognition, phagosome biology and antigen 
presentation44–50. The weak effects that were associ-
ated with individual polymorphisms suggest that the 
profound effects observed in twin studies arise from 
combinations of genes. Inclusion of population het-
erogeneity in the basic SIR model predicts important 
changes in transmission parameters that may influence 
strategies for optimal disease control28,31. This is an 
important example of how systems biology can provide 
a connection between research at the scale of cellular 
immunology with population-biology research.
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Equally important is genetic variation in the pathogen 
population. Advances in genome sequencing and related 
technologies have uncovered an unexpected diversity in 
the global phylogeny of M. tuberculosis. Initial interest 
focused on a series of rapidly changing genetic markers, 
such as the movement of the IS6110 insertion sequence51. 
These markers can facilitate tracking of local transmis-
sion chains, which could be used to refine the network 
transmission models referred to above39,40,52,53. At a deeper 
level of phylogeny, six major lineages of M. tuberculosis 
have been identified, which has prompted speculation 
about their historical and geographical relationships 
and the possible contribution of genotypic variation to 
the biology of disease54. These can be envisaged as a set 
of ‘ancient’ African and Indo–Oceanic lineages that are 
being progressively displaced by more aggressive ‘modern’ 
strains represented by the Euro–American, North Indian 
and Beijing lineages. One attractive hypothesis is that 
strains differ in their tendency towards primary disease 
relative to latent infection and reactivation (BOX 2). Models 
such as those described above could be used to explore 
the impact of such phenotypic differences on the spread 
of TB in populations with different densities and life 
histories. This, in turn, might help to identify important 
differences in selective pressures under which different 
lineages evolved. In the future, it will be important to 
link models of changing bacterial phylogeny with host 
population models to understand how genetic and envi-
ronmental changes in both populations interact with each 
other. This should lead to a better understanding of which 
population groups are the most susceptible to which 
pathogen strains55. An understanding of the phenotypic 
properties of different strains and lineages is also central to  
modelling the spread of drug-resistant organisms56.

Although TB and HIV-1 co-infection is of global 
concern, only a few models have been introduced that 
address the dynamics of these two diseases simultane-
ously. At the tissue scale, Kirschner57 developed a cel-
lular model that described the co-infection of HIV‑1 
and TB and predicted treatment effects. Naresh and 
Tripathi58 developed a model that was based on the 
population being divided into four sub-classes and 
then studied the transmission dynamics of HIV-1 in 
settings in which TB infection is treatable. West and 
Thompson59 performed numerical simulations to 
predict the future transmission trends of TB, whereas 
Porco, Small and Blower60 developed a model that pre-
dicted the impact of HIV‑1 infection on TB outbreaks. 
Some of these studies also examined treatment27,30,31.

Moving down the scales: the immune system. The above 
discussion emphasizes how, to accurately predict popu-
lation-level epidemic behaviour, we need to start incor-
porating aspects of individual behaviour. So far, this has 
been encapsulated through a few summary parameters, 
such as an individual’s susceptibility to infection or pro-
pensity towards active disease; ultimately, however, we 
need to link these parameters with information at the 
cellular and genetic levels. The first step in this direction 
is to model the dynamic progression of infection within 
a single host.

TB can affect any organ of the body, and progressive 
primary disease can occur at extra-pulmonary sites. 
The lungs of an individual patient typically contain a 
diversity of lesions with differing overall structures that 
change over time. Correlating spatio–temporal varia-
tions with breakdown or resolution of lesions is crucial 
to our understanding of the disease process. However, 
experimental studies are predominantly restricted to 
measuring immune parameters in the blood, and there 
is a problem in reconciling systemic observations with 
local anatomical diversity. The use of models can help 
overcome these difficulties, and even the simple mod-
els that are currently available already yield important 
insights (BOX 3).

An important extension to these simple models is 
the incorporation of a spatial component by tracking 
cell populations and cytokines separately in the lung 
and draining lymph nodes61,62. This approach has been 
used to explore DC trafficking between the two com-
partments and the role of antigen presentation. The 
combination of such modelling approaches with data 
from modern non-invasive imaging techniques63 pro-
vides a powerful framework to study the whole-body 
dynamics of TB.

From immune system to cell: structured population  
models. The models described in BOX 3 make the 
assumption that each cell population is homogeneous. 
For example, all TH0 cells are assumed to have the same 
properties and to differentiate into TH1 or TH2 cells at 
the same rate. In reality, however, any such cell popula-
tion will exhibit variation — for example, in the exact 
expression levels of various genes and the levels of vari-
ous metabolites. Similarly, individual bacteria probably 

 Box 3 | Within-host modelling of tuberculosis

Mathematical models have been developed that track the course of infection within a 
single host. These models typically track numbers of bacterial and host cell 
populations, as well as signalling molecules (for example, cytokines). Here, we present a 
series of models that have been developed over the past decade in our laboratories 
that explore host dynamics of infection. These models serve as a paradigm for the way 
in which such models can be approached and how they evolve, and highlight the 
importance of an iterative interaction with experimental observations.

The starting point was a simple model of a mycobacteria–macrophage interaction in 
the lung101. This model tracked the evolution over time of the numbers of three 
different sub-populations of macrophages, bacterial sub-populations, three T-
helper‑cell populations and four key cytokines, and predicted that latency and active 
disease, as well as clearance, can be observed under different host conditions. The 
model was extended to explore the role of CD8+ T cells by mimicking experimental 
protocols, such as depletion and deletion of specific cytokines and cell types102. These 
studies predicted a different contribution for effector CD8+ T cells that are cytotoxic 
compared with those that produce interferon‑γ, and suggested that a minimum level of 
effector memory cells of each T‑cell subset (CD4+ and CD8+) is required to provide 
protection following vaccination. This type of analysis is only available through in silico 
studies, as the level of detail that is needed to perform these experiments is not 
currently tractable.

A further extension allowed study of the role of tumour-necrosis factor α (TNFα) in 
protection during infection103. The model simulated two commonly used anti-
inflammatory therapies that antagonize TNFα, which allowed us to study why those 
therapies lead to different tuberculosis reactivation rates. This model predicted that 
only a small proportion (<2%) of TNFα is needed to control acute infection and 
maintain latency.
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Markov chain
A discrete-time stochastic 
process with the property that 
the next state solely depends 
on the present state, but 
not on the previous states.  
If a sequence of states has the 
Markov property, then every 
future state is conditionally 
independent of every prior 
state.

vary in their replication rate and antigen expression 
in response to differing local microenvironments. 
This situation is the same as that discussed above for 
modelling host-population behaviour and, in the same 
way, we need to link models of the whole population 
of immune and pathogen cells to models of individual 
decision making within each cell.

One attractive approach is to use structured popula-
tion models64, which are generalizations of age‑structured 
population models in ecology and epidemiology. Such 
models combine internal dynamic variables for each 
individual with a description of the interactions of a 
population of such individuals. An example is a multi-
scale model that combined mutual inhibition of two 
key transcription factors with an earlier cell-population 
model65 to describe TH‑cell differentiation66. This par-
ticular model did not incorporate pathogens or other 
cell types but, in principle, such a structured population 
framework would provide a powerful approach to linking 
models at different scales.

From cell to tissue: agent-based modelling. In linking 
different levels, we have so far started with a model at 
the larger scale, and incorporated increasingly detailed 
information about individual behaviour at the smaller 
scale. An alternative is to model a population of discrete 
individuals, before using it to predict overall population 
characteristics at higher scales. This requires a different 
mathematical approach compared with the models we 
have considered so far, which have used continuous vari-
ables to describe numbers of individuals or cells, or con-
centrations of relevant signalling molecules, leading to 
models that use ordinary differential equations67–70. Such 
equations provide a powerful modelling framework and 
have the advantage that a huge suite of analytical tools are 
available. Thus, rather than just simulating such models, 
we can both fit them to data71,72 and determine qualitative 
properties, such as stability and robustness73.

Models that use continuous variables, however, 
are only appropriate if the number of entities (such as 
organisms, cells and molecules) with identical behav-
iour is large. They are unsuitable in situations in which 
overall numbers are small or if we need to model dis-
crete individual behaviour. If such behaviour is simple, 
Markov chain models are typically used72,74, which, if they 
incorporate space, take the form of cellular automata and 
their generalizations75. As the behaviour of the individ-
ual entities becomes more sophisticated, agent-based 
models (ABMs), which offer a powerful approach to 
integrating the behaviour of individuals with the next 
scale above, become more widely used. BOX 4 illustrates 
an ABM model of granuloma formation that links the 
behaviour of individual cells with that of tissue-level 
structure.

Molecular systems biology: from sequence to cell. A large 
proportion of current efforts in systems biology is focused 
on integrating genome-wide data on the abundance of 
various classes of molecules (for example, mRNAs, pro-
teins and metabolites) into a coherent picture of cellular 
behaviour. In the context of this Review, this can be done 
for both the pathogen and various cell types in the host.

Transcriptome analysis using whole-genome microar-
rays has been performed for M. tuberculosis in a range 
of different culture conditions and during interactions 
with host macrophages76 (see Further information for a 
link to the TB Database). The proteome of M. tuberculosis 
under different growth conditions has been characterized 
by two-dimensional gel analysis77, although only limited 
information is available about protein–protein interac-
tions. Furthermore, high-throughput transposon muta-
genesis has been used to identify genes that are essential 
for growth in culture in macrophages and in mice78–81. 
Whereas all of the ‘omics’ datasets include some degree of 
experimental error, they provide a useful framework on 
which to build models of bacterial physiology82. Jamshidi 
and Palsson83 have begun to develop an in silico strain 
of M. tuberculosis (iNJ661) by incorporating a partial 
metabolic map, and have used this to help identify novel 
drug targets. An alternative approach for the identifica-
tion of drug targets that is based on differential weighting 
of information from multiple ‘omics’ datasets has been 

Box 4 | Agent-based model (ABM) of granuloma formation

Our two‑dimensional model104 simulates both the spatial and temporal events that are 
relevant to the formation and maintenance of a granuloma. Cell types and known 
biological rules of how these cells interact and behave (that is, rules such as 
proliferation, recruitment, effector actions and death) were used. The environment 
(lattice) represented 2 mm x 2 mm of lung tissue, which is approximately the average 
size of a granuloma, and vascular sources, where cells can enter lung tissue, were also 
included. As agents (see the figure), we included T cells (pink), and macrophages that are 
resting (green), activated (blue), infected (orange) or chronically infected (red). Bacteria 
are shown in yellow and caseum in brown. The model permits spatio-temporal 
simulations of cells, bacteria and chemokines.

The model predicted three distinct and robust infection outcomes: a granuloma  
that was tightly packed, small and showed little necrosis and that contained bacterial 
growth (see the figure, panel a); a granuloma that was larger and more diffuse with a 
much greater caseous area that failed to restrict bacterial dissemination (see the 
figure, panel b); and a granuloma that cleared the bacteria load altogether and then 
dispersed (not shown). The key question that arises is how are these different 
outcomes obtained? Using the sensitivity analysis techniques developed specifically 
for use with ABMs105, we determined that of the more than 27 parameters (rules) that 
govern the interactions in our model, only 7 were statistically significant in 
determining these different granuloma structures. A major feature of the sensitivity 
analysis is that these significances can be determined over time, allowing us to 
determine which parameters are important early in infection dynamics (for example, 
at 30 days) and which have a role later in the dynamics (for example, at 500 days).  
This analysis suggested that both T cells and chemokines are important in determining 
granuloma outcome. See Further information for a link to the full simulations  
(Time Lapse Simulations of Agent Based Models).
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Cellular automata
Discrete models that consist of 
a regular grid of cells, each  
of which has a finite number of 
states. The state of a cell at 
time t is a function of the states 
of a finite number of cells 
(called its neighbourhood) at 
time t−1. Every cell has the 
same rule for updating that is 
based on the values in this 
neighbourhood. Each time the 
rules are applied to the whole 
grid, a new generation is 
created.

Granuloma
A roughly spherical structure 
that comprises a focus of 
infection that is surrounded by 
immune cells. Dead cells at the 
centre of the granuloma may 
decompose, leaving a ‘cheesy’ 
residue that is referred to as 
caseum.

incorporated into a web-based tool (webTB; see Further 
information) by the TB Structural Genomics Consortium. 
Other websites that are relevant to the modelling of 
M. tuberculosis at the molecular level include genome 
data (for example, the pathogen website of the Wellcome 
Trust Sanger Institute and the Comprehensive Microbial 
Resource of the J. Craig Venter Institute), proteomic data 
(for example, the Proteome 2D-PAGE Database) and 
information on mutant strains (for example, TARGET 
(Tuberculosis Animal Research and Gene Evaluation 
Taskforce) (see Further information).

Host–pathogen interactions at the cellular and molecular 
levels. Classical studies of M. tuberculosis infection of 
macrophages showed that live, but not killed, bacteria 
can inhibit the process by which internalized micro-
organisms are exposed to the toxic environment of an 
acidic phagolysosome, which provides an attractive 
explanation for their ability to transform these cells 
from lethal enemies to a safe haven84. However, the 
observation that the presence of antibodies reverses 
this inhibition without affecting intracellular survival85 
suggests an additional level of complexity. Many sub-
sequent studies have added detailed characterization 
of the immature phagosome that is occupied by myco-
bacterial pathogens86. This is a complex and stochastic 
process: mycobacteria are distributed between early 
and late phagosomal compartments and, under some 
conditions, can also become free in the cytoplasm87. 
The dynamics of mycobacterial killing and survival are 
substantially altered in macrophages that have under-
gone a maturation process that is triggered by a com-
bination of microbial ligands and cytokines (mainly by 
IFN‑γ that is delivered by natural killer cells in the early 
stage of infection and by T cells following the onset  
of adaptive immunity). The molecular mechanism of 
phagosomal arrest, as well as the mechanism and loca-
tion of mycobacterial killing, remains to be clearly 
defined. Jordao et al.88 have attempted to capture the 
complexity of the fate of the bacille Calmette–Guérin 
(BCG) vaccine in J774 macrophages in the form of a 
simple differential equation model that describes the 
distribution of live and dead organisms in early and 
late phagosomal compartments. Their careful analy-
sis suggests cycles of killing and replication, with late 
phagosomes providing the location for rapid killing 
and clearance of bacteria.

Modelling at this level can also begin to unravel the 
ways in which the pathogen manipulates signalling by 
host cells, and microarray snapshots have been gener-
ated of the host cell response to infection89. Analysis of 
microarray time courses using ordinary differential-
equation models is proving to be a powerful approach 
to unravelling innate immune responses90. For example, 
such analysis emphasized the role of the transcription 
factor ATF3 and its associated network of interactions in 
signalling through Toll-like receptors, and subsequently 
identified 92 transcription factors that have a role in this 
macrophage response91. This approach highlights the 
huge challenge in understanding such complex networks. 
Differences in pathogenesis among M. tuberculosis strains 

are likely to result, at least in part, from differences in 
innate immune recognition92,93. For example, the highly 
virulent phenotype expressed by a Beijing-family strain 
in a mouse model was associated with a difference in 
cytokine profile, which was linked to the expression of a 
phenolic glycolipid surface molecule92.

M. tuberculosis also subverts adaptive immune 
responses by downregulating antigen presentation in 
macrophages. A mathematical model that tracks levels 
of various molecules, including complexes of pep-
tide–class II major histocompatibility complex (MHC) 
on the cell surface, can allow the comparison of different 
hypotheses. This approach showed that mechanisms 
which target class II MHC expression are effective at 
inhibiting antigen presentation, but only after a delay 
of at least 10 hours after M. tuberculosis infection. By 
comparison, mechanisms that target other cellular proc-
esses have an immediate effect, but may be attenuated 
under certain conditions. Therefore, targeting multiple 
cellular processes might represent an optimal strategy by 
which M. tuberculosis maintains continuous inhibition of 
antigen-presentation events94.

Conclusion: integrating scales
Persistent infections present a complex problem for 
scientific understanding and treatment at both the indi-
vidual and population levels. Using TB as an example, we 
have shown how it is important to consider interactions 
at scales that range from the molecular to the popula-
tion levels (BOX 1). Implicit to this problem is the need to 
integrate events that occur at widely disparate timescales, 
ranging from molecular and cellular interactions that 
occur in seconds or minutes to the potentially decade-
long development of the disease. This presents a huge 
challenge, but also an exciting opportunity to develop 
fundamentally novel insights by establishing links 
between disparate areas of biology.

Multi-scale models have recently been applied to a 
number of tissues, including cardiac cells95 and growing 
tumours96, as well as to the field of tissue engineering97. 
Recent work in our laboratories66,98,99 has begun to explore 
a multi-scale modelling approach that describes aspects 
of immunity, and we propose that this approach is well-
suited for understanding the host–pathogen interaction 
in M. tuberculosis infection.

We have summarized a number of ways in which 
models are beginning to be used to link events at dif-
ferent scales. Typically, this involves the development of 
a model at a single level that considers a homogeneous 
population of individuals, cells or molecules, and then 
incorporates variation between individual members 
of this population. Given the diversity of modelling 
approaches that are available, such multi-scale integra-
tion presents a major challenge. Some of the models 
will be rich in experimental detail, whereas others 
will be highly speculative extrapolations from a sparse 
database. The success of the models should be judged 
by their ability to provide a logical framework that pre-
dicts the most productive areas for future experimental 
efforts, rather than their ability to include every detail 
of current knowledge.
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A key step in building a multi-scale model will be to 
identify points at which informative data can be relayed 
between models and to focus experimental attention on 
strengthening these links. Molecular models of mycobac-
terial gene expression have the potential to provide infor-
mation about the availability of ligands that are involved in 
recognition by the innate and adaptive immune responses; 
for example, by providing important parameters that influ-
ence the dynamics of granuloma formation. Resulting dif-
ferences in the local microenvironment of the pathogen, 
in turn, provide parameters that can be fed back into 
metabolic models to predict bacterial growth rates and 
susceptibility to drug- and immune-mediated killing.

In this Review, we have focused on TB as an exam-
ple. The same themes, however, arise in any other 
persistent disease, such as HIV/AIDS or malaria. Each 
of these diseases would provide specific details about 
the interactions between scales (such as the complex 
life cycle of the malaria parasite) that would require 
the development of customized modelling approaches. 
Nevertheless, the basic principles highlighted here will 
have an equally important role in understanding other 
diseases. Ultimately, as experience with multi-scale 
integrative systems biology grows, we hope to iden-
tify generic techniques that lead to novel and efficient 
means of controlling these global diseases.
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